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The studies on C-H bond activation reactions of hydrocarbon
molecules by transition metal complexes1 have been one of the
most attractive areas in organometallic chemistry because of their
importance in functionalization of inert hydrocarbon molecules.2

Among organometallic systems, (η5-C5R5)Ir [R ) Me (Cp*); R )
H (Cp)] complexes are the most promising for such activations,
and their ability has been disclosed.3-7 The investigations on C-H
activation by Cp*Ir and CpIr complexes have been mainly carried
out with mononuclear complexes. The active species in the oxidative
addition of the C-H bond of hydrocarbons to these complexes is
believed to be an unsaturated 16e- (η5-C5R5)IrI(L) fragment,3-6

which is generated by reductive elimination of the hydrogen or
hydrocarbon from (η5-C5R5)IrIII (R′)(H)(L) [R′ ) H,3a,b,4calkyl,3c,d

or alkenyl5c], or by dissociation of the neutral ligand from (η5-
C5R5)IrI(L)(L ′) [L ′ ) CO,4a,b C2H4,5a-c or η2-nitrile6] (eq 1) under
photoirradiation or thermal conditions.

On the other hand, much attention has been paid to the activation
of organic molecules on multinuclear metal complexes, and several
interesting results involving C-H activation have been reported in
recent years.8 We have recently disclosed the synthesis and some
reactivities of novel dinuclear Cp*Ir complexes containing multiple
hydrido ligands, [(Cp*Ir)2(µ-diphos)(µ-H)2]2+ [diphos ) bis-
(dimethyphosphino)methane (dmpm) (1)9a or bis(diphenylphosphi-
no)methane (dppm) (2)9b]. Having these novel dinuclear complexes
1 and2 in hand, we have anticipated that these complexes could
generate unsaturated 32e- IrII-IrII (or IrIII -IrI) species by depro-
tonation (eq 2). While C-H activation by dinuclear IrII-IrII

complexes has been rare,10 it could give 34e- IrIII -IrIII products
by oxidative addition of the C-H bond, the bridge splitting of which
might again generate coordinatively unsaturated species desirable
for further functionalization of the activated C-H bond. In this
paper, we report the base-induced inter- and intramolecular activa-
tion of aromatic C-H bonds by1 and 2 under extremely mild
conditions without photochemical activation.11

Treatment of1 with 1.1 equiv of NaOtBu in benzene at room
temperature gave [(Cp*Ir)(H)(µ-dmpm)(µ-H)(Cp*Ir)(Ph)]+ (3) in
44% yield via intermolecular C-H activation of benzene (eq 3).
In the 1H NMR spectrum of3, two signals for nonequivalent Cp*

were found atδ 2.12 and 1.85. Signals for hydrides were observed
atδ -17.02 (terminal) and-25.39 (bridge). Signals for the aromatic
ring were found atδ 7.50, 6.94, and 6.88. In the13C{1H} NMR, a
signal for the carbon at the ipso position of the aromatic ring was
found atδ 132.8 as a doublet (J ) 13 Hz) coupling to a phosphorus.
All NMR data (1H, 13C{1H}, and31P{1H}) of 3 are consistent with
the proposed structure. When the reaction was carried out in ben-
zene-d6, D-incorporation was observed in the bridging hydride po-
sition.12 The structure of3 was confirmed by an X-ray diffraction
study. The molecular geometry and atom-numbering system of3
are shown in Figure 1. It is apparent that the phenyl ring bonds to
one of the iridium atoms with an Ir-C distance of 2.073(6) Å,
showing no interaction with another iridium center. The hydrides
were located in the difference Fourier maps. Complex3 would be
a 34e- one, if the bridging hydride is regarded as a two-electron
ligand.

The C-H activation of toluene gave a mixture of the products
[(Cp*Ir)(H)(µ-dmpm)(µ-H)(Cp*Ir)(p-Tol)]+ (4a) and [(Cp*Ir)(H)-
(µ-dmpm)(µ-H)(Cp*Ir)(m-Tol)]+ (4b) in a 1:2 ratio (eq 3), which
were deduced to bep-tolyl and m-tolyl isomers, respectively, ac-
cording to the NMR signal patterns of the aromatic ring (see Sup-
porting Information). Noo-tolyl or benzylmetallated product was
observed. The C-H activation of furan also gave two products
[(Cp*Ir)(H)(µ-dmpm)(µ-H)(Cp*Ir)(2-Fur)]+ (5a) and [(Cp*Ir)(H)-
(µ-dmpm)(µ-H)(Cp*Ir)(3-Fur)]+ (5b) in a 5:2 ratio (eq 3). An X-ray
diffraction study of5awas performed (see Supporting Information).
The structure of5awas very similar to that of3 except for the aryl
group.

When the phenyl complex3 was refluxed in furan for 20 h,
conversion of3 into the 2-furyl complex5a was observed (eq 4).
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Figure 1. ORTEP drawing of the cation part of3 with 30% thermal
probability ellipsoids. Hydrogen atoms (except hydride) are omitted for
clarity. Selected (bond) distances (Å): Ir(1)‚‚‚Ir(2) ) 3.190(1); Ir(1)-P(1)
) 2.250(2); Ir(2)-P(2)) 2.259(2); Ir(1)-C(26)) 2.073(6); Ir(1)-H(101)
) 1.62; Ir(2)-H(101) ) 1.77; Ir(2)-H(102) ) 1.39.
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This reaction could be explained by reductive elimination of
benzene to generate an active IrII-IrII (or IrIII -IrI) intermediate at
first, followed by C-H activation of furan.13

In contrast to the intermolecular C-H activation by the dmpm
bridged diiridium complex1, reaction of the dppm bridged diiridium
complex2 with weak base (Et2NH) resulted in intramolecular C-H
activation of the phenyl group of the dppm ligand to give [(Cp*Ir)-
(H){µ-PPh(C6H4)CH2PPh2}(µ-H)(Cp*Ir)]+ (6) in quantitative yield
(eq 5).14 The structure of6 was confirmed by an X-ray diffraction
study. The molecular geometry and atom-numbering system of6
are shown in Figure 2. One of the ortho carbons of the phenyl
group in the dppm ligand is attached to one of the iridium centers
with an Ir-C distance of 2.10(2) Å.

A possible mechanism for the present C-H activation by
dinuclear iridium complexes is as follows (eq 6). First, one of the

bridging hydrides in1 or 2 would be eliminated as a proton by the
reaction with base to generate a monocationic IrII-IrII species (step
a).15 This IrII-IrII species would be in equilibrium with the IrIII -
IrI species accompanied by migration of the hydride between the
bridging and terminal positions.16 The C-H bond of the aromatic
solvent or the phenyl ring in the dppm ligand would then approach
the IrI center (step b), and activation of the C-H bond would occur
to give complexes3-6 (step c). This mechanism is supported by
the result of the C-H activation of benzene-d6, showing a selective
D-incorporation at the bridging position in the product (vide supra).

In summary, we have demonstrated the novel base-induced inter-
and intramolecular activation of aromatic C-H bonds by diphos-
phine and hydrido-bridged dinuclear iridium complexes under
extremely mild conditions. It should be noted that the present C-H
activation reactions by diiridium complexes give hydrido-bridged

34e- complexes, which might generate coordinatively unsaturated
species by bridge-splitting transformation.
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Figure 2. ORTEP drawing of the cation part of6 with 30% thermal
probability ellipsoids. Hydrogen atoms are omitted for clarity. Selected
(bond) distances (Å): Ir(1)‚‚‚Ir(2) ) 3.235(2); Ir(1)-P(1) ) 2.285(4); Ir-
(2)-P(2) ) 2.224(4); Ir(1)-C(45) ) 2.10(2).
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